Taut distance-regular graphs and the subconstituent algebra
نویسندگان
چکیده
We consider a bipartite distance-regular graph Γ with diameter D ≥ 4 and valency k ≥ 3. Let X denote the vertex set of Γ and fix x ∈ X. Let Γ22 denote the graph with vertex set X̆ = {y ∈ X | ∂(x, y) = 2}, and edge set R̆ = {yz | y, z ∈ X̆, ∂(y, z) = 2}, where ∂ is the path-length distance function for Γ. The graph Γ22 has exactly k2 vertices, where k2 is the second valency of Γ. Let η1, η2, . . . , ηk2 denote the eigenvalues of the adjacency matrix of Γ22; we call these the local eigenvalues of Γ. Let A denote the adjacency matrix of Γ. We obtain upper and lower bounds for the local eigenvalues in terms of the intersection numbers of Γ and the eigenvalues of A. Let T = T (x) denote the subalgebra of MatX(C) generated by A,E ∗ 0 , E ∗ 1 , . . . , E ∗ D, where for 0 ≤ i ≤ D, E ∗ i represents the projection onto the ith subconstituent of Γ with respect to x. We refer to T as the subconstituent algebra (or Terwilliger algebra) of Γ with respect to x. An irreducible T -module W is said to be thin whenever dimE∗ i W ≤ 1 for 0 ≤ i ≤ D. By the endpoint of W we mean min{i|E∗ i W 6= 0}. We give a detailed description of the thin irreducible T -modules that have endpoint 2 and dimension D − 3. In [Discrete Math., 225(2000), 193–216] MacLean defined what it means for Γ to be taut. We obtain three characterizations of the taut condition, each of which involves the local eigenvalues or the above T -modules.
منابع مشابه
Distance-regular graphs of q-Racah type and the q-tetrahedron algebra
In this paper we discuss a relationship between the following two algebras: (i) the subconstituent algebra T of a distance-regular graph that has q-Racah type; (ii) the q-tetrahedron algebra ⊠q which is a q-deformation of the three-point sl2 loop algebra. Assuming that every irreducible T -module is thin, we display an algebra homomorphism from ⊠q into T and show that T is generated by the imag...
متن کاملOn the connectedness of the complement of a ball in distance-regular graphs
An important property of strongly regular graphs is that the second subconstituent of any primitive strongly regular graph is always connected. Brouwer asked to what extent this statement can be generalized to distanceregular graphs. In this paper, we show that if γ is any vertex of a distanceregular graph Γ and t is the index where the standard sequence corresponding to the second largest eige...
متن کاملSpectral Characterization of Some Generalized Odd Graphs
Suppose G is a connected, k-regular graph such that Spec G Spec G where G is a distance-regular graph of diameter d with parameters a1 a2 adÿ1 0 and ad > 0; i.e., a generalized odd graph, we show that G must be distance-regular with the same intersection array as that of G in terms of the notion of Ho ̈man Polynomials. Furthermore, G is isomorphic to G if G is one of the odd polygon ...
متن کاملTaut Distance-Regular Graphs of Odd Diameter
Let denote a bipartite distance-regular graph with diameter D ≥ 4, valency k ≥ 3, and distinct eigenvalues θ0 > θ1 > · · · > θD . Let M denote the Bose-Mesner algebra of . For 0 ≤ i ≤ D, let Ei denote the primitive idempotent of M associated with θi . We refer to E0 and ED as the trivial idempotents of M . Let E, F denote primitive idempotents of M . We say the pair E, F is taut whenever (i) E,...
متن کاملThe subconstituent algebra of a bipartite distance-regular graph; thin modules with endpoint two
We consider a bipartite distance-regular graph Γ with diameter D ≥ 4, valency k ≥ 3, intersection numbers bi, ci, distance matrices Ai, and eigenvalues θ0 > θ1 > · · · > θD. Let X denote the vertex set of Γ and fix x ∈ X. Let T = T (x) denote the subalgebra of MatX(C) generated by A,E ∗ 0 , E ∗ 1 , . . . , E ∗ D, where A = A1 and E ∗ i denotes the projection onto the i th subconstituent of Γ wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 306 شماره
صفحات -
تاریخ انتشار 2006